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IN AN earlier paper [I] the author presented an analysis 
of the fully developed convective processes for laminar 
or turbulent flow in a circular tube with arbitrary cir- 
cumferential wall heat flux. In practical situations one 
may know the circumferential heat input to the tube, 
but the conduction processes within the wall tend to 
smooth out any variations, making the circumferential 
heat flux variation from the tube to the fluid less drastic. 
However, the results of the earlier analysis may be 
applied immediately in consideration of the wall con- 
duction effects, and this means is developed below. 

The differential equation describing one-dimensional 
heat conduction within a uniform thickness tube is* 

k& Ptw 
2w r. 

- qw”(B) + qs”(L9) = 0. (1) 

The nomenclature of [1] has been adopted, with the 
addition of kw for the wall conductivity, 6 for wall 
thickness, and q8” for the known heat tlux input to the 
tube. qW” represents the convection per unit area from the 
tube to the fluid, which was considered known in [I]. 
We assume that qS ” is known in the form of a Fourier 
expansion, 

%‘W = qso” + c” (A, sin n0 + En cos ne). (2) Knowing the coefficients an and b,, we can return to 
n=l equation (17) of [I] to find the temperature distribution. 

In [1] the wall heat flux is expressed in the form 

q,“(e) = qO” + g (a, sin ne + bn cos ne). (3) 
7l=l 

It is an easy matter to relate the coefficients an and bn 
to the known coefficients A,, and Bn. From equation 
(17) of [1] we can express the temperature distribution 
in terms of the an’s, bn’s, and known functions S,. 
Assuming that this temperature distribution is twice- 

* Axial conduction vanishes in thermally fully 
developed flow. Radial gradients are neglected in the 
one-dimensional analysis. 

differentiable, we differentiate and combine with (1) 
above, obtaining 

kw6 m 
- kr, [n~lSnnz (an sin ne + bn cos ne)] 

- [qO” + 2 (a, sin ne + b, cos &)I 
II=1 

+ [qaO” + Z (A, sin ne + B, cos ne)l = 0. (4) 
n=l 

Integrating around the circumference, it follows that 

40 
I, ” = q80 . W 

Multiplying by sin me, and integrating around the cir- 
cumference, only the terms going with n = m are 
retained. We then find 

an = An/[’ + Snn'g)]. 

Similarly, multiplying by cos me and integrating, 

bn = Bn/[ 

tde, X) - tdx) = $ (sd8,~~ + 
co S, 

Z, L1 + S,n2 (k,s,k,.o)l (An sin nfl + IL ws 4 I . (6) 

In particular, for the example of [l], 

tw - tm 
7 = o’0112 I 030 cos e 

qao rdk ’ + [1 + 0.018 (k&/kr,)] ’ (7) 
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